Clozapine reverses hyperthermia and sympathetically mediated cutaneous vasoconstriction induced by 3,4-methylenedioxymethamphetamine (ecstasy) in rabbits and rats.

نویسندگان

  • W W Blessing
  • B Seaman
  • N P Pedersen
  • Y Ootsuka
چکیده

Life-threatening hyperthermia occurs in some individuals taking 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). In rabbits, sympathetically mediated vasoconstriction in heat-exchanging cutaneous beds (ear pinnae) contributes to MDMA-elicited hyperthermia. We investigated whether MDMA-elicited cutaneous vasoconstriction and hyperthermia are reversed by clozapine and olanzapine, atypical antipsychotic agents. Ear pinna blood flow and body temperature were measured in conscious rabbits; MDMA (6 mg/kg, i.v.) was administered; and clozapine (0.1-5 mg/kg, i.v.) or olanzapine (0.5 mg/kg, i.v.) was administered 15 min later. One hour after MDMA, temperature was 38.7 +/- 0.5 degrees C in 5 mg/kg clozapine-treated rabbits and 39.0 +/- 0.2 degrees C in olanzapine-treated rabbits, less than untreated animals (41.5 +/- 0.3 degrees C) and unchanged from pre-MDMA values. Ear pinna blood flow increased from the MDMA-induced near zero level within 5 min of clozapine or olanzapine administration. Clozapine-induced temperature and flow responses were dose-dependent. In urethane-anesthetized rabbits, MDMA (6 mg/kg, i.v.) increased ear pinna postganglionic sympathetic nerve discharge to 217 +/- 33% of the pre-MDMA baseline. Five minutes after clozapine (1 mg/kg, i.v.) discharge was reduced to 10 +/- 4% of the MDMA-elicited level. In conscious rats made hyperthermic by MDMA (10 mg/kg, s.c.), body temperature 1 hr after clozapine (3 mg/kg, s.c.) was 36.9 +/- 0.5 degrees C, <38.6 +/- 0.3 degrees C (Ringer's solution-treated) and not different from the pre-MDMA level. One hour after clozapine, rat tail blood flow was 24 +/- 3 cm/sec, greater than both flow in Ringer's solution-treated rats (8 +/- 1 cm/sec) and the pre-MDMA level (17 +/- 1 cm/sec). Clozapine and olanzapine, by interactions with 5-HT receptors or by other mechanisms, could reverse potentially fatal hyperthermia and cutaneous vasoconstriction occurring in some humans after ingestion of MDMA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cutaneous vasoconstriction contributes to hyperthermia induced by 3,4-methylenedioxymethamphetamine (ecstasy) in conscious rabbits.

3,4-Methylenedioxymethamphetamine (MDMA; "Ecstasy") increases body temperature. This process could be associated with increased cutaneous blood flow, as normally occurs with exercise-induced hyperthermia. Alternatively, an MDMA-induced fall in cutaneous blood flow could contribute to the hyperthermia by diminishing normal heat transfer from the body to the environment. We investigated these pos...

متن کامل

Effects of MDMA on body temperature in humans

Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA prod...

متن کامل

Pentoxifylline Protects the Rat Liver Against Fibrosis and Apoptosis Induced by Acute Administration of 3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy)

Objective(s): 3,4-Methylenedioxymethamphetamine (MDMA) is one of the most popular drugs of abuse in the world with hallucinogenic properties that has been shown to induce apoptosis in  liver cells. The present study aimed to investigate the effects of pentoxifylline (PTX) on liver damage induced by acute administration of MDMA in Wistar rat. Materials and Methods: Animals were administered wit...

متن کامل

Chronic stress enhances the corticosterone response and neurotoxicity to +3,4-methylenedioxymethamphetamine (MDMA): the role of ambient temperature.

Stress facilitates drug abuse by humans. In rodents, stress enhances the neurochemical, neuroendocrine, and behavioral responses to psychostimulants. Although chronic unpredictable stress (CUS) enhances the acute hyperthermic and long-term monoamine-depleting effects of the psychostimulant +3,4-methylenedioxymethamphetamine (MDMA), the roles of hyperthermia and corticosterone (CORT) in mediatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 15  شماره 

صفحات  -

تاریخ انتشار 2003